Abstract

A combination of Fourier transform infrared spectroscopy (FT-IR) and chemometrics was used as a screening tool for the determination of sugars and organic acids such as sucrose, glucose, fructose, sorbitol, citric acid, and malic acid in processed commercial and extracted fresh apple juices. Prepared samples of synthetic apple juice in different constituent concentration ranges were scanned by attenuated total reflectance (ATR) accessory and the spectral region in the range between 950 and 1500 cm(-1) was selected for calibration model development using partial least squares (PLS) regression and principal component regression (PCR). The calibration models were successfully validated by high-performance liquid chromatography (HPLC) measurements against several commercial juice varieties as well as juice extracted from different apple varieties to provide an overall R2 correlation of 0.998. The present study demonstrates that Fourier transform infrared spectroscopy could be used for rapid and nondestructive determination of multiple constituents in commercial and fresh apple juices. Results indicate this approach to be a rapid and cost-effective tool for routine monitoring of multiple constituents in a fruit juice production facility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.