Abstract
Islets of Langerhans release peptide hormones in controlled amounts and patterns to ensure proper maintenance of blood glucose levels. The overall release of the hormones is shaped by external factors and by autocrine and paracrine interactions occurring within the islets. To better understand what controls the secretion of islet-secreted peptides, and how these processes go awry in diabetes, methods to monitor the release of multiple hormones simultaneously are needed. While antibody-based assays are typically used, they are most often applied to quantification of a single hormone. Mass spectrometry (MS), on the other hand, is well suited for quantifying multiple hormones simultaneously but typically requires time-consuming separation steps with biological samples. In this report, response surface methodology was used to identify a set of optimal solid-phase extraction (SPE) conditions for the islet-secreted peptides, insulin, C-peptide, glucagon, and somatostatin. The optimized SPE method was used with multiple reaction monitoring and isotopically labeled standards to quantify secretion levels. Calibrations were linear from 0.5 to 50 nM with <15% RSD peak area ratios. A microfluidic system was used to perfuse 30 human islets with different glucose conditions, and fractions were collected every 2 min for SPE-MS analysis. Results showed the release dynamics of the individual peptides, as well as patterns, such as positively and negatively correlated release and oscillations. This rapid SPE-MS method is expected to be useful for examining other peptide and small-molecule secretions from islets and could be applied to a number of other biological systems for investigating cellular communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.