Abstract

In characterization of quantum systems, adapting measurement settings based on data while it is collected can generally outperform in efficiency conventional measurements that are carried out independently of data. The existing methods for choosing measurement settings adaptively assume that the model, or the number of unknown parameters, is known. We introduce simultaneous adaptive model selection and parameter estimation. We apply our technique for characterization of a superconducting qubit and a bath of incoherent two-level systems, a leading decoherence mechanism in the state-of-the-art superconducting qubits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.