Abstract
Magnetic microcalorimeters (MMCs) are cryogenic, energy-dispersive single-particle detectors providing excellent energy resolution, intrinsically fast signal rise time, quantum efficiency close to 100%, large dynamic range as well as almost ideal linear response. One of the remaining challenges to be overcome to ultimately allow for the utilization of large-scale MMC based detector arrays with thousands to millions of individual pixels is the realization of a SQUID based multiplexing technique particularly tailored for MMC readout. Within this context, we report on the first demonstration of a frequency-division multiplexed readout of an MMC based detector array using both, a custom microwave SQUID multiplexer as well as a dedicated software-defined radio (SDR) readout electronics. We successfully performed a simultaneous readout up to eight multiplexer channels, each monitoring two detector pixels. We show that the signal shape is not changed as compared to a dc-SQUID readout and that similar values for the energy resolution can be obtained. Nevertheless, we observed an influence of the internal quality factor of the microwave resonators used for frequency encoding on the energy resolution that affects the resolution of the co-added sum spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.