Abstract

The objective was to investigate the impact of the bioaugmentation on chain elongation process using glycerol, lactate and lactose as substrates in an open culture fermentation. In the batch trials the highest selectivity for chain elongation product, i.e. caproate, was observed in trials inoculated with co-culture of Megasphaera elsdenii and Eubacterium limosum grown on glycerol (28.6%), and in non-bioaugmented open culture run on lactose + lactate (14.8%). The results showed that E. limosum, out of two bioaugmented strains, was able to survive in the open culture. A continuous open culture fermentation of glycerol led to caproate and 1,3-propanediol (1,3-PDO) formation, while lactate addition led to 1,3-PDO and short chain carboxylates production. Moving the process into batch mode triggered even-carbon chain elongation. Presence of E. limosum promoted odd-carbon chain elongation and valerate production. Imaging flow cytometry combined with machine learning enabled the discrimination of Eubacterium cells from other microbial strains during the process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call