Abstract

The dynamic diamond anvil cell (dDAC) technique has attracted great interest because it possibly provides a bridge between static and dynamic compression studies with fast, repeatable, and controllable compression rates. The dDAC can be a particularly useful tool to study the pathways and kinetics of phase transitions under dynamic pressurization if simultaneous measurements of physical quantities are possible as a function of time. We here report the development of a real-time event monitoring (RTEM) system with dDAC, which can simultaneously record the volume, pressure, optical image, and structure of materials during dynamic compression runs. In particular, the volume measurement using both Fabry-Pérot interferogram and optical images facilitates the construction of an equation of state (EoS) using the dDAC in a home-laboratory. We also developed an in-line ruby pressure measurement (IRPM) system to be deployed at a synchrotron x-ray facility. This system provides simultaneous measurements of pressure and x-ray diffraction in low and narrow pressure ranges. The EoSs of ice VI obtained from the RTEM and the x-ray diffraction data with the IRPM are consistent with each other. The complementarity of both RTEM and IRPM systems will provide a great opportunity to scrutinize the detailed kinetic pathways of phase transitions using dDAC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.