Abstract

Combining the steady-state and quasi-steady-state T type probes, the longitudinal thermal conductivity and thermal effusivity of individual mesophase pitch-based carbon fiber heat treated at 2800 °C and 1000 °C have been measured from 100 K to 300 K. The present method allows simultaneous measurements of thermal properties using the same instrument, by simply changing the applied direct current to alternating current. The specific heat is found to decrease with increasing heat-treatment temperature and to approach the value of graphite. The highly graphitized carbon fiber has a maximum thermal conductivity of 410 W · m−1 · K−1 at about 250 K, and its thermal diffusivity decreases with increasing temperature. Comparatively, the thermal conductivity of the fiber heat treated at 1000 °C is much smaller, with the peak shifting to high temperature due to a large defect density, and its thermal diffusivity is nearly temperature independent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.