Abstract
The in-plane effective thermal conductivity of free-standing Si thin films with periodic micropores was measured at -100 to 0 °C. The Si thin films with micropores were prepared from silicon-on-insulator (SOI) wafers by standard microfabrication processes. The dimensions of the free-standing Si thin films were 200μm×150μm×2 μm, with staggered 4 μm pores having an average pitch of 4 mm. The Si thin film serves both as a heater and thermometer. The average temperature rise of the thin film is a function of its in-plane thermal conductivity. The effective thermal conductivity was calculated using a simple one-dimensional heat conduction model. The measured thermal conductivity was much lower than that expected based on classical model evaluations. A significant phonon size effect was observed even in the microsized structures, and the mean free path for phonons is very long even at the room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.