Abstract

A newly constructed cell, which allows simultaneous measurements of optical and electrical properties, was used to study bimolecular black membranes composed of beef heart mitochondrial lipids and their interaction with cytochrome c. The results show that these highly charged membranes are stable only in relatively limited ranges of boundary conditions. In 0.1 n KCl their maximum direct current (dc) resistance is 7 X 10(8) Ohm cm2 +/- 10%; the series capacity at 1 kHz is 0.43 muF/cm2 +/- 3%; the entire thickness, determined by optical reflectivity, is 5.8 +/- 0.2 nm. The interaction between oxidized cytochrome c and these lipid membranes is primarily of electrostatic nature, and dependent on the presence of highly charged phospholipids, such as diphosphatidyl glycerol (cardiolipin) and phosphatidyl ethanolamine. The attachment of cytochrome c maximally causes a 2.5-fold increase in reflectivity, without any noticeable change in the capacity. This leads to a subsequent instability of the membrane (i.e., rupture) preceded by a rapid increase of the dc conductivity. This behavior is far less pronounced with reduced cytochrome c.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.