Abstract

Near infrared spectroscopy (NIRS) and functional magnetic resonance imaging (fMRI) both allow non-invasive monitoring of cerebral cortical oxygenation responses to various stimuli. To compare these methods in elderly subjects and to determine the effect of age on cortical oxygenation responses, we determined motor-task-related changes in deoxyhemoglobin concentration ([HHb]) over the left motor cortex in six healthy young subjects (age 35 +/- 9 years, mean +/- SD) and five healthy elderly subjects (age 73 +/- 3 years) by NIRS and blood-oxygen-level-dependent (BOLD) fMRI simultaneously. The motor-task consisted of seven cycles of 20-sec periods of contralateral finger-tapping at a rate as fast as possible alternated with 40-sec periods of rest. Time-locked averages over the seven cycles were used for further analysis. Task-related decreases in [HHb] over the motor cortex were measured by NIRS, with maximum changes of -0.83 +/- 0.38 mumol/L (P < 0.01) for the young and -0.32 +/- 0.17 mumol/L (P < 0.05) for the elderly subjects. The BOLD-fMRI signal increased over the cortex volume under investigation with NIRS, with maximum changes of 2.11 +/- 0.72% (P < 0.01) for the young and 1.75 +/- 0.71% (P < 0.01) for the elderly subjects. NIRS and BOLD-fMRI measurements showed good correlation in the young (r = -0.70, r(2) = 0.48, P < 0.001) and elderly subjects (r = -0.82, r(2) = 0.67, P < 0.001). Additionally, NIRS measurements demonstrated age-dependent decreases in task-related cerebral oxygenation responses (P < 0.05), whereas fMRI measurements demonstrated smaller areas of cortical activation in the elderly subjects (P < 0.05). These findings demonstrate that NIRS and fMRI similarly assess cortical oxygenation changes in young subjects and also in elderly subjects. In addition, cortical oxygenation responses to brain activation alter with aging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.