Abstract

In this paper, we propose a method for measuring thermal and infrared properties of infrared transparent and semi-transparent thin film. We have investigated an undoped Al0.33Ga0.67As thin film epitaxially grown on a heavily Zn doped GaAs substrate using spectrally-resolved modulated photothermal infrared radiometry (SR-PTR). We perform supplementary measurements in order to determine values of layer thickness and infrared absorption coefficient and estimate successively values of the thermal conductivity and diffusivity of the Al0.33Ga0.67As thin layer, using the SR-PTR method. The obtained values of the thermal conductivity and diffusivity of the Al0.33Ga0.67As thin layer demonstrate that PTR method can be used for the thermal characterization of infrared transparent layers deposited on a highly infrared absorbing substrate. Supplementary Fourier Transform Infrared (FTIR) Spectroscopy measurements yield information only about the thickness of the Al0.33Ga0.67As layer. The results demonstrate that the SR-PTR method is a very good method for characterizing the thermal, geometrical and infrared properties of infrared-transparent thin film samples. However, some of the layer properties should be known a priori. It is worth emphasizing that the spectrally resolved measurements increase the reliability in estimating parameters of the thin layer by introducing additional channels of information. Finally, we conclude that the SR-PTR method combines features of infrared spectroscopic and calorimetric methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call