Abstract

Long period fiber grating is a kind of transmission type optical fiber grating. Due to the advantages such as low insertion loss, wide bandwidth, low-level reflection, high sensitivity, low cost and ease of compactness, LPFGs have been widely applied in optical fiber sensing and optical fiber communication. The Mode coupling of LPFG is the coupling between the fiber core mode and the cladding mode in the same transmission direction. If the ordinary LPFG is combined with bitaper or taper, we can effectively change the original LPFG's transmission spectrum to obtain the composite LPFG, which can stimulate new resonant peaks in the original wavelength-dependent transmission loss of the grating basis, thus applying to the dual-parameter simultaneously measuring field. We report a novel all-fiber narrow-bandwidth intermodal Mach– Zehnder interferometer (MZI) based on a long-period fiber grating (LPFG) combined with a fiber bitaper. The LPFG is written by high-frequency CO 2 laser pulses, and the bitaper is connected in series with the LPFG, forming the Mach– Zehnder interferometer (MZI). Experimental results indicate that the MZI has good temperature sensitivity, The temperature sensitivity of the two loss peaks are 55.35pm/°C and 48.18pm/°C respectively. The strain sensitivity of the two loss peaks are 3.35pm/μe and -4.925pm/μe respectively. By using the different temperature and strain response characteristics of the loss peaks, the temperature and strain measurement can be realized simultaneously. the proposed device has good repeatability and stability, which would be a promising candidate for precise dual-parameter sensing application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call