Abstract

We have demonstrated a novel scheme for simultaneous measurement of temperature and refractive index by using an exposed core microstructured optical fiber (ECF). The ECF allows for high sensitivity to refractive index due to the small exposed-core, while being supported by a standard fiber diameter cladding making it robust compared to optical microfibers. The sensor combines a fiber Bragg grating (FBG) inscribed into the core of the ECF and a multimode Mach-Zehnder interferometer (MZI). Both the FBG and MZI are sensitive to refractive index (RI) and temperature through a combination of direct access to the evanescent field via the exposed-core, the thermo-optic effect, and thermal expansion. The FBG and MZI respond differently to changes in temperature and RI, thus allowing for the simultaneous measurement of these parameters. In our experiment, RI sensitivities of 5.85 nm/RIU and 794 nm/RIU, and temperature sensitivities of 8.72 pm/°C and -57.9 pm/°C, were obtained for the FBG and MZI respectively. We demonstrate that a transfer matrix approach can be used to simultaneously measure both parameters, solving the problem of temperature sensitivity of RI sensors due to the high thermo-optic coefficient of aqueous samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.