Abstract
AbstractThe conduction and viscoelastic responses to temperature are measured simultaneously for carbon black (CB) filled high‐density polyethylene (HDPE) subjected to dynamic torsion. PTC/NTC transition was correlated with the loss tangent peak and the quasi modulus plateau, which was ascribed to the filler network. The bond‐bending model of elastic percolation networks was used to reveal the structural mechanisms for the cyclic resistance changes at different temperatures. The resistance changes at lower temperatures depended on the deformation of the polymer matrix, while the changes in melting state were mainly attributed to the rearrangement of the CB network. A simple scaling law is derived to relate resistance and dynamic storage modulus in the melting region. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.