Abstract

We developed a simultaneous measurement technique for temperature distribution on a heated surface and gas-liquid interface motion of two-phase flows in microgap channel using temperature-sensitive paint (TSP). Since the TSP layer is optically transparent, the proposed method enables us to simultaneously measure the temperature distribution and the motion of gas-liquid interface through the TSP layer using an in-house stereoscope-like device. Since the refractive index of gas-phase differs from that of liquid-phase, the luminescent intensity of TSP in gas-phase varies from that in liquid-phase even though the temperatures are same in both phases. Then, we proposed a correction method for temperature distribution in gas-phase. To validate the proposed method, the temperature distribution measurements were conducted in liquid single-phase flow. The Nusselt numbers calculated from the measured temperatures were in good agreement with the Sieder-Tate equation. Then, we measured the temperature distributions for the boiling flows under several heated temperature conditions. The temperature distributions at growing bubble and bubble coalescence were successfully measured. TSP is useful method for investigating the temperature distribution in two-phase flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.