Abstract

Conventional MRI plays a key role in the management of patients with high-grade glioma, but multiparametric MRI and PET tracers could provide further information to better characterize tumor metabolism and heterogeneity by identifying regions having a high risk of recurrence. In this study, we focused on proliferation, hypervascularization, and hypoxia, all factors considered indicative of poor prognosis. They were assessed by measuring uptake of 18F-3'-deoxy-3'-18F-fluorothymidine (18F-FLT), relative cerebral blood volume (rCBV) maps, and uptake of 18F-fluoromisonidazole (18F-FMISO), respectively. For each modality, the volumes and high-uptake subvolumes (hot spots) were semiautomatically segmented and compared with the contrast enhancement (CE) volume on T1-weighted gadolinium-enhanced (T1w-Gd) images, commonly used in the management of patients with glioblastoma. Methods: Dynamic susceptibility contrast-enhanced MRI (31 patients), 18F-FLT PET (20 patients), or 18F-FMISO PET (20 patients), for a total of 31 patients, was performed on preoperative glioblastoma patients. Volumes and hot spots were segmented on SUV maps for 18F-FLT PET (using the fuzzy locally adaptive bayesian algorithm) and 18F-FMISO PET (using a mean contralateral image + 3.3 SDs) and on rCBV maps (using a mean contralateral image + 1.96 SDs) for dynamic susceptibility contrast-enhanced MRI and overlaid on T1w-Gd images. For each modality, the percentages of the peripheral volumes and the peripheral hot spots outside the CE volume were calculated. Results: All tumors showed highly proliferated, hypervascularized, and hypoxic regions. The images also showed pronounced heterogeneity of both tracers regarding their uptake and rCBV maps, within each individual patient. Overlaid volumes on T1w-Gd images showed that some proliferative, hypervascularized, and hypoxic regions extended beyond the CE volume but with marked differences between patients. The ranges of peripheral volume outside the CE volume were 1.6%-155.5%, 1.5%-89.5%, and 3.1%-78.0% for 18F-FLT, rCBV, and 18F-FMISO, respectively. All patients had hyperproliferative hot spots outside the CE volume, whereas hypervascularized and hypoxic hot spots were detected mainly within the enhancing region. Conclusion: Spatial analysis of multiparametric maps with segmented volumes and hot spots provides valuable information to optimize the management and treatment of patients with glioblastoma.

Highlights

  • All tumors were confirmed to be a glioblastoma by the pathologist and exhibited a marked contrast enhancement (CE) on 3D T1-weighted gadolinium-enhanced (T1w-Gd) images, elevated relative cerebral blood volume (rCBV), and pronounced 18F-FLT and 18F-FMISO uptake

  • A similar situation occurred for 18F-FMISO uptake but was less pronounced, with the peripheral volume being 43% whereas for cerebral blood volume (CBV) only 11% of the segmented area extended into the nonenhancing area

  • Because our study showed that metabolically active areas are visible outside the CE volume, removal of only the CE volume could contribute to explaining a rapid recurrence of glioblastoma

Read more

Summary

Introduction

All patients had hyperproliferative hot spots outside the CE volume, whereas hypervascularized and hypoxic hot spots were detected mainly within the enhancing region. Conclusion: Spatial analysis of multiparametric maps with segmented volumes and hot spots provides valuable information to optimize the management and treatment of patients with glioblastoma. Glioblastomas are characterized by a pronounced intratumoral heterogeneity [5], which is macroscopically visible on conventional MRI as regions of necrosis and contrast enhancement (CE) [6] and has been associated with a large range of response to therapies [7]. Conventional MRI with the so-called CE area remains the most used imaging modality to characterize glioblastoma and guide treatment.

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.