Abstract
This paper presents navigation techniques for an Unmanned Aerial Vehicle (UAV) in a virtual simulation of an indoor environment using Simultaneous Localization and Mapping (SLAM) and April Tag markers to reach a target destination. In many cases, UAVs can access locations that are inaccessible to people or regular vehicles in indoor environments, making them valuable for surveillance purposes. This study employs the Robot Operating System (ROS) to simulate SLAM techniques using LIDAR and GMapping packages for UAV navigation in two different environments. In the Tag-based simulation, the input topic for April Tag in ROS is camera images, and the calibration of position with a tag is done through assigning a message to each ID and its marker image. On the other hand, navigation in SLAM was achieved using a global and local planner algorithm. For localization, an Adaptive Monte-Carlo Localization (AMCL) technique has been used to identify factors contributing to inconsistent mapping results, such as heavy computational load, grid mapping accuracy, and inadequate UAV localization. Furthermore, this study analyzed the April Tag-based navigation algorithm, which showed satisfactory outcomes due to its lighter computing requirements. It can be ascertained that by using ROS packages, the simulation of SLAM and Tag-based UAV navigation inside a building can be achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.