Abstract

Acquiring general material appearance with hand-held consumer RGB-D cameras is difficult for casual users, due to the inaccuracy in reconstructed camera poses and geometry, as well as the unknown lighting that is coupled with materials in measured color images. To tackle these challenges, we present a novel technique for estimating the spatially varying isotropic surface reflectance, solely from color and depth images captured with an RGB-D camera under unknown environment illumination. The core of our approach is a joint optimization, which alternates among solving for plausible camera poses, materials, the environment lighting and normals. To refine camera poses, we exploit the rich spatial and view-dependent variations of materials, treating the object as a localization-self-calibrating model. To recover the unknown lighting, measured color images along with the current estimate of materials are used in a global optimization, efficiently solved by exploiting the sparsity in the wavelet domain. We demonstrate the substantially improved quality of estimated appearance on a variety of daily objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.