Abstract
Electrical switching of ferroelectric domains and subsequent domain wall motion promotes strong piezoelectric activity, however, light scatters at refractive index discontinuities such as those found at domain wall boundaries. Thus, simultaneously achieving large piezoelectric effect and high optical transmissivity is generally deemed infeasible. Here, it is demonstrated that the ferroelectric domains in perovskite Pb(In1/2 Nb1/2 )O3 -Pb(Mg1/3 Nb2/3 )O3 -PbTiO3 domain-engineered crystals can be manipulated by electrical field and mechanical stress to reversibly and repeatably, with small hysteresis, transform the opaque polydomain structure into a highly transparent monodomain state. This control of optical properties can be achieved at very low electric fields (less than 1.5kV cm-1 ) and is accompanied by a large (>10000 pm V-1 ) piezoelectric coefficient that is superior to linear state-of-the-art materials by a factor of three or more. The coexistence of tunable optical transmissivity and high piezoelectricity paves the way for a new class of photonic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.