Abstract

The development of sensitive and convenient methods for detection, enrichment, and analysis of circulating tumor cells (CTCs), which serve as an importance diagnostic indicator for metastatic progression of cancer, has received tremendous attention in recent years. In this work, a new approach characteristic of simultaneous CTC capture and detection is developed by integrating a microfluidic silicon nanowire (SiNW) array with multifunctional magnetic upconversion nanoparticles (MUNPs). The MUNPs were conjugated with anti-EpCAM antibody, thus capable to specifically recognize tumor cells in the blood samples and pull them down under an external magnetic field. The capture efficiency of CTCs was further improved by the integration with a microfluidic SiNW array. Due to the autofluorescence free nature in upconversion luminescence (UCL) imaging, our approach allows for highly sensitive detection of small numbers of tumor cells, which afterward could be collected for further analysis and re-culturing. We have further demonstrated that this approach can be applied to detect CTCs in clinical blood samples from lung cancer patients, and obtained consistent results by analyzing the UCL signals and the clinical outcomes of lung cancer metastasis. Therefore our approach represents a promising platform in CTC capture and detection with potential clinical utilization in cancer diagnosis and prognosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.