Abstract

ABSTRACTWe present a formulation to simultaneously invert for a heterogeneous shear modulus field and traction boundary conditions in an incompressible linear elastic plane stress model. Our approach utilizes scalable deterministic methods, including adjoint-based sensitivities and quasi-Newton optimization, to reduce the computational requirements for large-scale inversion with partial differential equation (PDE) constraints. We address the use of regularization for such formulations and explore the use of different types of regularization for the shear modulus and boundary traction. We apply this PDE-constrained optimization algorithm to a synthetic dataset to verify the accuracy in the reconstructed parameters, and to experimental data from a tissue-mimicking ultrasound phantom. In all of these examples, we compare inversion results from full-field and sparse data measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.