Abstract
Building reflectivity and quality factor (Q) using nonstationary post-stack seismic data is important for vertical resolution enhancement of seismic data and reservoir identification. However, it is well-known that both reflectivity and Q affect the waveform of seismic data, leading to the fact that simultaneously estimating them is a strong ill-posed multi-parameter inverse problem which faces the crosstalk problem. In this paper, we propose a new method for simultaneous inversion of reflectivity and Q. A deep-learning-based data decoupling operator is proposed to decouple the effects of the two parameters on nonstationary seismic data. Based on the decoupled data, we transform the original multi-parameter inverse problem into two independent singe-parameter inverse problems that are immune to crosstalk and can build reasonable initial models for reflectivity and Q. Then alternative iteration is conducted to update the two built initial models to obtain the final models. A few well-logs are used to train the deep learning architecture and specific regularization terms are constructed for the inverse problem to ensure physically reasonable results. Synthetic and field data examples verify the effectiveness of the proposed method and its advantages over a conventional model-driven joint inversion method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.