Abstract

AbstractIn a model polyurethane/poly(methyl methacrylate) (PU/PMMA) system, the partitioning of unreacted methyl methacrylate monomer (MMA) is studied in the late stages of its polymerization, simulated by incorporating controlled amounts of MMA in otherwise fully cured simultaneous interpenetrating networks (SIN) samples. Glass transitions temperatures (Tg) were determined using dynamic mechanical spectroscopy and differential scanning calorimetry as a function of MMA content of the SINs. The lowering of Tg in each phase due to the plasticization effect of MMA is used to calculate a plasticization coefficient for each phase, finally allowing calculation of the partition coefficient of MMA between the two phases. It is found that the MMA monomer distributes itself almost uniformly across the two phases of the current SIN system, leading to speculation as to the locus of late SIN polymerization. © 1995 John Wiley & Sons, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call