Abstract

Perovskite materials offer a great potential in the application of semitransparent solar cells, owing to the tunable bandgap, ease of preparation and excellent photovoltaic property. A majority of works exhibit high average visible-light transmittance (AVT) for semitransparent perovskite solar cells (ST-PSCs) through decreasing perovskite thickness, leading to sacrificing the power conversion efficiency (PCE) of the device. Herein, a wide-bandgap (WBG) perovskite of Cs0.2 FA0.8 Pb(I0.6 Br0.4 )3 is applied as absorber in ST-PSCs, which is a tremendous progress to balance both large PCE and high AVT. Moreover, a strategy of simultaneous interfacial modification and defect passivation is provided to enhance the performance of WBG ST-PSCs. Consequently, an inverted planar structure WBG perovskite solar cell (PSC) achieves 15.06% of PCE with excellent stability by restraining the interfacial energy loss and suppressing the nonradiative recombination. Furthermore, the ST-PSC obtains high PCE of 14.40% with an AVT of 38% by means of optimizing the transparent electrode. This work provides an efficient and simple method to improve the performance and AVT of ST-PSCs for the application in building-integrated photovoltaics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.