Abstract

A fixed-order set-valued observer is presented for linear parameter-varying systems with bounded-norm noise and under completely unknown attack signals, which simultaneously finds bounded sets of states and unknown inputs that include the true state and inputs. The proposed observer can be designed using semidefinite programming with LMI constraints and is optimal in the minimum $\mathcal{H}_{\infty}$ -norm sense. We show that the strong detectability of each constituent linear time-invariant system is a necessary condition for the existence of such an observer, as well as the boundedness of set-valued estimates. Furthermore, sufficient conditions are provided for the upper bounds of the estimation errors to converge to steady state values and finally, the results of such a set-valued observer are exhibited through an illustrative example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.