Abstract

Indoor location estimation is crucial to provide context-based assistance in home environments. In this study, a method for simultaneous indoor pedestrian localization and house mapping is proposed and evaluated. The method fuses a person’s movement data from an Inertial Measurement Unit (IMU) with proximity and activity-related data from Bluetooth Low-Energy (BLE) beacons deployed in the indoor environment. The person’s and beacons’ localization is performed simultaneously using a combination of particle and Kalman Filters. We evaluated the method using data from eight participants who performed different activities in an indoor environment. As a result, the average participant’s localization error was 1.05 ± 0.44 m, and the average beacons’ localization error was 0.82 ± 0.24 m. The proposed method is able to construct a map of the indoor environment by localizing the BLE beacons and simultaneously locating the person. The results obtained demonstrate that the proposed method could point to a promising roadmap towards the development of simultaneous localization and home mapping system based only on one IMU and a few BLE beacons. To the best of our knowledge, this is the first method that includes the beacons’ data movement as activity-related events in a method for pedestrian Simultaneous Localization and Mapping (SLAM).

Highlights

  • Based on the concept of ubiquitous computing introduced by Mark Weiser in 1990 [1], new research fields have emerged, such as the internet of things, ambient intelligence, smart homes, smart spaces, and ambient assisted living

  • This paper presents a novel method for Simultaneous Pedestrian Indoor Localization and house mapping based on human movement and activity-related data

  • The first block contains the logic proposed to process the data of the Inertial Measurement Unit (IMU) and the beacons to obtain the necessary input variables required in the process the data of the IMU and the beacons to obtain the necessary input variables required in the second block, which is responsible for estimating the person’s position and the position of the second block, As which is responsible for estimating thethe person’s position and the position of using the beacons

Read more

Summary

Introduction

Based on the concept of ubiquitous computing introduced by Mark Weiser in 1990 [1], new research fields have emerged, such as the internet of things, ambient intelligence, smart homes, smart spaces, and ambient assisted living. The main purpose of those fields is to provide context-based assistance to the user. To provide such support, contextual information such as the location and the activity that a person is carrying out is useful. Global Navigation Satellite Systems (GNSS) such as Galileo, developed by the European Union and the Global Positioning System (GPS) developed by the United States, are widely known and used. This is because these systems can accurately track worldwide positions with small and cheap hardware. The interaction of the signals with fixed and mobile obstacles in indoor environments produces undesirable effects

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call