Abstract
IntroductionConventionally, receptor occupancy assays employ radiolabelled tracer. However, recent advances with non-radiolabelled tracers brought a revolution in target engagement assays. Non-radiolabelled tracer based receptor occupancy uses LC-MS/MS based quantification. It offers simultaneous quantification of more than one tracer; thus, provides the feasibility of evaluating multiple targets in a single animal. In the present study, we demonstrated simultaneous measurement of serotonin 1A, serotonin 2A, and dopamine 2 receptor occupancy using non-radiolabelled tracers in rats. MethodNon-radiolabelled WAY-100635 or MDL-100,907 or raclopride were used as tracers for 5-HT1A, 5-HT2A, and D2 receptors, respectively. In-vivo brain distribution of these tracers was measured after administration as individual or as a mixture of tracers (cocktail tracer). Similarly, in-vitro brain free fractions were evaluated with the single and cocktail tracer in brain homogenates. The mass spectrometer was used for simultaneous quantification of tracers in both in-vivo and in-vitro samples. A ratio method was employed for calculation of receptor occupancy after single and cocktail tracer administration. Pindolol, olanzapine, and ziprasidone were used as tool compounds for demonstrating receptor occupancy at 5-HT1A, 5-HT2A, and D2 receptors. ResultIn optimization studies, regional distribution and concentration ratios (specific to non-specific) of these tracers were unaltered with individual and cocktail tracer. Non-significant variability was observed in brain free fraction of tracers' indicating the minimal binding interactions in this tracer combination. The half-maximal effective dose (ED50) for pindolol (5-HT1A 1.37 & 2.42mg/kg, i.v.), olanzapine (5-HT2A 1.37 & 2.12 and D2 1.90 & 2.72mg/kg, p.o.), and ziprasidone (5-HT1A 10.92 & 9.57; 5-HT2A 0.03 & 0.04 and D2 0.11 & 0.08mg/kg, i.v.) were comparable with individual or cocktail tracer. DiscussionThe present study demonstrated the utility of non-radiolabelled tracers in simultaneous measurement of multiple target engagement. Use of this method will minimize the time, in addition to the cost in translational research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Pharmacological and Toxicological Methods
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.