Abstract
A key requirement for practical applications of nanostructured block copolymer (BCP) self-assembly is the ability to generate complex geometries including different shapes and diverse sizes across one substrate surface. This has been difficult because spatial control over the underlying chemistry of the BCP has been limited. Here, we demonstrate a photocontrolled in-film polymerization process in the presence of monomer vapor for synthesizing homopolymers in self-assembled BCP films. The homopolymers blend with BCPs and alter the nanopatterns by changing the underlying polymer chemistry and composition. We apply this technique to a variety of BCPs including polystyrene-b-polyisoprene-b-polystyrene, polystyrene-b-poly(methyl methacrylate), and polystyrene-b-poly(4-vinylpyridine). The region of in-film polymerization can be modulated by the location of irradiation using photomasks for obtaining distinct morphologies on one substrate, providing a new platform for hierarchically manipulating nanopatterns within the self-assembled BCP thin film as well as opening up a new area for radical polymerizations of monomers within such geometrically confined, swollen films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.