Abstract

The lab-synthesized ceria (CeO2) nanoparticles were surface-modified to provide proton conductivity. The dopamine sulfonated ceria (CeO2-DS) nanoparticles were embedded into the thin surface layers of Nafion 212 membranes, resulting in the sandwiched structure. The structure, morphology and properties of the synthesized nanoparticles and membranes were analyzed using a variety of methods including TEM, FTIR, DLS, XRD, XPS, TGA, and SEM-EDS. The CeO2-DS nanoparticles exhibited excellent OH• and OOH• radical scavenging effect for enhanced chemical stability, accompanied by a simultaneous improvement of proton conductivity of the membrane. The proton conductivity of the Nafion-CeO2-DS8 membrane was 0.112 ∼ 0.199 S cm-1 from room temperature to 80 °C, which was about 1.5-fold higher than that of pristine Nafion membrane. Nevertheless, the prepared sandwiched structure membrane demonstrated quite high electrical resistance due to the absence of electrically conductive ceria nanoparticles in the thick middle layer. Consequently, not only the durability but also the cell performance of the membrane was significantly enhanced, illustrating the maximum power density of 522 mW cm-2, which was much higher than those of the pristine and single-layer composite membranes, 460 mW cm-2 and 390 mW cm-2, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.