Abstract
Owing to the human activities such as smelting and mining, arsenic (As), lead (Pb) and cadmium (Cd) seriously polluted the soil of non-ferrous metal mining areas, thus efficient methods for the simultaneous immobilization of the three heavy metals are urgently needed. In the present study, Mg–Al modified biochars (MABs) were synthesized through a simple one-pot pyrolysis method to immobilize the three heavy metals. According to the BET (Brunauer-Emmett-Teller) test method, MABs had larger specific surface areas than biochar. Compared to the materials obtained at 300 °C and 700 °C, MAB with a pyrolysis temperature of 500 °C (MAB 500) had a significant immobilization effect on As, Pb and Cd in the Gansu mining area. Compared with BC, the removal efficiencies of As, Pb and Cd increased from −62%, 17% and 5% to 52%, 100% and 66%, respectively. And the toxicity characteristic leaching procedure (TCLP) test showed that the leaching concentrations of the three heavy metals in the treated soil were all lower than the standard value. X-ray photoelectron spectroscopy and kinetic experiments showed that there were various mechanisms in the immobilization process of the three heavy metals, and the large specific surface area and the multi-Mg/Al–OH of MABs play an important role in this process. More charges were provided by larger specific surface for ion exchange with heavy metals. In addition, larger specific surface area also provided more adsorption sites. More complex sites were provided by Mg/Al–OH to form Mg/Al–O-M then immobilize the heavy metals. In summary, the immobilization mechanism may involve electrostatic attraction, precipitation/co-precipitation, and surface complexation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.