Abstract

This study describes a technique that utilizes a single, tunable, pulsed dye laser and two intensified CCD cameras to image NH and NO simultaneously in turbulent ammonia-hydrogen-nitrogen jet flames. The NO radical is excited at 236.214 nm in its (0,1) band, while NH is excited in its A3Π-X3Σ–(1,0) band using the residual energy of the beam at 303.545 nm, necessary to yield 236.214 nm via mixing with the fundamental of the pump laser at 1064.ßnm. Data show that it is possible to image the instantaneous structure of these turbulent flames, specifically, NH delineates the reaction zone while NO also marks the location of burnt products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.