Abstract

Chemotherapeutic drugs can induce irreparable DNA damage in cancer cells, leading to apoptosis or premature senescence. Unlike apoptotic cell death, senescence is a fundamentally different machinery restrainingpropagation of cancer cells. Decades of scientific studies have revealed the complex pathological effects of senescent cancer cells in tumors and microenvironments that modulate cancer cells and stromal cells. New evidence suggests that senescence is a potent prognostic factor during cancer treatment, and therefore rapid and accurate detection of senescent cells in cancer samples is essential. This paper presents a method to visualize and detect therapy-induced senescence (TIS) in cancer cells. Diffuse large B-cell lymphoma (DLBCL) cell lines were treated with mafosfamide (MAF) or daunorubicin (DN) and examined for the senescence marker, senescence-associated β-galactosidase (SA-β-gal), the DNA synthesis marker 5-ethynyl-2'-deoxyuridine (EdU), and the DNA damage marker gamma-H2AX (γH2AX). Flow cytometer imaging can help generate high-resolution single-cell images in a short period of time to simultaneously visualize and quantify the three markers in cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.