Abstract

Given multiple source images of the same scene, image fusion integrates the inherent complementary information into one single image, and thus provides a more complete and accurate description. However, when the source images are of low-resolution, the resultant fused image can still be of low-quality, hindering further image analysis. To improve the resolution, a separate image super-resolution step can be performed. In this paper, we propose a novel framework for simultaneous image fusion and super-resolution. It is based on the use of sparse representations, and consists of three steps. First, the low-resolution source images are interpolated and decomposed into high- and low-frequency components. Sparse coefficients from these components are then computed and fused by using image fusion rules. Finally, the fused sparse coefficients are used to reconstruct a high-resolution fused image. Experiments on various types of source images (including magnetic resonance images, X-ray computed tomography images, visible images, infrared images, and remote sensing images) demonstrate the superiority of the proposed method both quantitatively and qualitatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call