Abstract

This paper investigates a specific ill-posed nonlinear inverse problem that arises in financial markets. Precisely, as a benchmark problem in the context of volatility surface calibration, we consider the simultaneous recovery of implied volatility and interest rate functions over a finite time interval from corresponding call- and put-price functions for idealized continuous families of European vanilla options over the same maturity interval. We prove identifiability of the pair of functions to be identified by showing injectivity of the forward operator in L2-spaces. To overcome the ill-posedness we employ a two-parameter Tikhonov regularization with heuristic parameter choice rules and demonstrate chances and limitations by means of numerical case studies using synthetic data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.