Abstract

A theoretical framework is presented that allows direct identification of a single point-source pollution location and time in heterogeneous multidimensional systems under known flow field conditions. Based on the concept of the transfer function theory, it is shown that an observed pollution plume contains all the necessary information to predict the concentration at the unknown pollution source when a reversed flow field transport simulation is performed. This target concentration C 0 is obtained from a quadratic integral of the observed pollution plume itself. Backwards simulation of the pollution plume leads to shrinkage of the C 0-contour due to dispersion. When the C 0-contour reduces to a singular point, i.e. becomes a concentration maximum, the position of the pollution source is identified and the backward simulation time indicates the time elapsed since the contaminant release. The theoretical basis of the method is first developed for the ideal case that the pollution plume is entirely known and is illustrated using a synthetic heterogeneous 2D example where all the hydro-dispersive parameters are known. The same example is then used to illustrate the procedure for a more realistic case, i.e. where only few observation points exist.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.