Abstract

Xanthones are well recognized as chemotaxonomic markers for the plants belonging to the genus Garcinia. Xanthones have many interesting pharmacological properties. Efficient extraction and rapid liquid chromatography methods are essentially required for qualitative and quantitative determination of xanthones in their natural sources. In the present investigation, fruit rinds extracts of 8 Garcinia species from India, were prepared with solvents of varying polarity. Identification and quantification of 3 xanthones, namely, α-mangostin, β-mangostin, and γ-mangostin in these extracts were carried out using a rapid and validated ultra-high-performance liquid chromatography–photodiode array detection (UHPLC–PDA) method at 254 nm. γ-Mangostin (3.97 ± 0.05 min) was first eluted, and it was followed by α-mangostin (4.68 ± 0.03 min) and β-mangostin (5.60 ± 0.04 min). The calibration curve for α-mangostin, β-mangostin, and γ- mangostin was linear in the concentration range 0.781–100 μg/mL. α-Mangostin was quantified in all 4 extracts of Garcinia mangostana. Its content (%) in hexane, chloroform, ethyl acetate, and methanol extracts of G. mangostana was 10.36 ± 0.10, 4.88 ± 0.01, 3.98 ± 0.004, and 0.044 ± 0.002, respectively. However, the content of α-mangostin was below the limit of detection or limit of quantification in the extracts of other Garcinia species. Similarly, β-mangostin was quantified only in hexane (1.17 ± 0.01%), chloroform (0.39 ± 0.07%), and ethyl acetate (0.28 ± 0.03%) extracts of G. mangostana. γ-Mangostin was quantified in all 4 extracts of G. mangostana. Its content (%) in hexane, chloroform, ethyl acetate, and methanol extracts of G. mangostana was 0.84 ± 0.01, 1.04 ± 0.01, 0.63 ± 0.04, and 0.15 ± 0.01, respectively. γ-Mangostin was also quantified in hexane (0.09 ± 0.01), chloroform (0.05 ± 0.01), and ethyl acetate (0.03 ± 0.01) extracts of G. cowa, ethyl acetate extract of G. cambogia (0.02 ± 0.01), G. indica (0.03 ± 0.01), and G. loniceroides (0.07 ± 0.01). Similarly, γ-mangostin was quantified in 3 extracts of G. morella, namely, hexane (0.03 ± 0.01), chloroform (0.04 ± 0.01), and methanol (0.03 ± 0.01). In the case of G. xanthochymus, γ-mangostin was quantified in chloroform (0.03 ± 0.001) extract only. α-Mangostin and β-mangostin were not detected in any of 4 extracts of G. pedunculata.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.