Abstract
The simultaneous hydrogen and ethanol production from glucose and xylose was investigated. The effect of carbon sources on hydrogen and ethanol production was examined in batches. When the substrate concentration was increased from 1 g/L to 7 g/L, the hydrogen yield decreased from 0.74 mol/mol to 0.15 mol/mol and from 0.67 mol/mol to 0.07 mol/mol for glucose and xylose. The highest ethanol yield of 1.19 mol/(mol·glucose) was obtained at 5 g/L glucose and 6 g/L xylose concentrations. For the co-fermentation of glucose and xylose, the highest ethanol yield 1.54 mol/(mol·hexose) was obtained at 2.5 g/L glucose to 2.5 g/L xylose (1:1). However, the hydrogen yield was not significantly affected by the glucose to xylose ratio. Continuous co-fermentation of glucose and xylose by extreme thermophiles was successfully demonstrated using an upflow anaerobic reactor. The hydrogen production rate, the ethanol concentration, and the substrate degradation efficiency increased along with pH. The optimal pH for the continuous mode was determined to be in the range of 5.8–6.6.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.