Abstract

With a recently developed high-performance liquid chromatography (HPLC) method based on anion exchange chromatography, precise fraction collection, and reversed-phase chromatography, the oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OH-dG) was measured in human urine samples. The HPLC analysis was further modified to measure 8-OH-dG in rat and mouse urine samples. In addition, the urinary RNA degradation product 7-methylguanine (m 7Gua) was analyzed simultaneously. The correlation coefficient ( r) for the correlation between urinary creatinine and m 7Gua was 0.9 for rats and 0.8 for humans and mice. Levels of 8-OH-dG in relation to urinary creatinine were compared and found to be similar for humans and rats and twice as high for mice. Urinary levels of m 7Gua, as normalized to creatinine, were several-fold higher in rodents as compared with human levels, thereby correlating with the higher resting metabolic rate of rodents. The presented results show that 8-OH-dG and m 7Gua can be analyzed simultaneously and reliably in urine from humans and rodents. In addition, m 7Gua may be used as a reliable marker instead of creatinine for the normalization of 8-OH-dG in urine from rats and mice and also may be used in addition to normalization with creatinine in measurements of 8-OH-dG in human urine samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call