Abstract

While bimetallic nanocomposites have demonstrated extraordinary – three to even ten-fold – gains in strength with decreasing layer thickness, their strengths tend to plateau beyond a critical layer thickness. More disappointingly, such increases in strength are almost always accompanied by a decrease in their strains to failure (ductility). In this work we report simultaneous improvements in both strength and mechanical stability of Nb/Mg nanolaminates with decreasing layer thicknesses, a trend seldom reported in nanolaminates consisting of pure metals. Using micro-pillar compression and nanoindentation experiments we show that physical vapor deposited (PVD) Nb/Mg nanolaminates that contain a body center cubic (bcc) Mg pseudomorphic phase demonstrate a >60% increase in strength and a >80% increase in strain to failure over those containing the hexagonal close packed (hcp) Mg phase. Instead of a strength plateau, the hcp-to-bcc phase transition in Mg results in a renewed strengthening regime in the nanolaminate caused by the change to a coherent interface from an incoherent one, along with a concurrent increase in strain-to-failure due to the introduction of a more plastically isotropic bcc material from an anisotropic hcp structure. Using high resolution transmission electron microscopy (HR-TEM) we also demonstrate the presence of a thin layer of bcc Mg at the Nb/Mg interface at larger layer thicknesses when Mg is predominantly hcp. Our results suggest that the increases in strain to failure in the Nb/Mg nanolaminates with decreasing layer thicknesses can be corelated to the approximate volume fraction of the pseudomorphic bcc Mg present in the layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call