Abstract

Simultaneous high-speed quantitative imaging of mixture fraction and velocity is demonstrated using the fourth- and second-harmonic outputs, respectively, of a burst-mode Nd:YAG laser. A tenfold increase in the record length and 16-fold increase in per-pulse energy are achieved compared with previous measurements of mixture fraction using burst-mode and continuously pulsed diode-pumped solid-state lasers, respectively. The high output energy is used for quantitative, high-speed mixture-fraction imaging with acetone planar laser-induced fluorescence, which also enables simultaneous particle-based velocimetry without interference from particle scattering. A semiquantitative model is used to determine the limitations on fourth-harmonic output energy due to the effects of transient absorption and thermal phase mismatch over a range of repetition rates. Data are presented for mixing within a turbulent jet (Reynolds number of 15,000) and are validated by comparisons with known turbulent mixing laws and previously published data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.