Abstract

Binary distillation in continuous contact equipment is modeled as a simultaneous heat and mass transfer process. In order to account for the interactions between heat and mass transfer between the two phases, the equations developed from enthalpy and material balances are analyzed simultaneously and it is revealed that the individual phase mass transfer coefficients can be evaluated rigorously by measuring liquid phase compositions and temperatures in distillation experiments. Using the theoretical relations, it is proved that the liquid phase in a distillation column will be saturated if and only if there is negligible resistance to mass transfer in the liquid film. For the case of comparable resistances in both phases, the possible amount of superheat in the liquid phase would be considerable and thus convenient to determine experimentally. The liquid phase temperatures are shown to be important in experimental analysis (i.e. in determining the individual phase transfer coefficients) but not in design applications. For the latter case, the model equations reduce to the conventional mass transfer relations which are not as sensitive to temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call