Abstract

BackgroundThe ABO(H) secretor status is controlled by FUT2-encoded α(1,2)fucosyltransferase (Se enzyme) activity. Three SNPs of FUT2, 302C>T (rs200157007), 385A>T (rs1047781), and 428G>A (rs601338), cause three major variants of nonsecretor (se) or weak-secretor (Sew) alleles. Evidence has been accumulating that suggests the secretor status is associated with various conditions including infectious diseases but a robust multiplex method for assaying relatively large-scale samples to determine the genotype of these three SNPs simultaneously has not been developed yet. MethodsBy combined usage of two Eprobes and a dual-labeled fluorescence probe, we developed a real-time PCR, followed by triplex probe-based fluorescent melting-curve analysis (FMCA) for genotyping of 302C>T, 385A>T, and 428G>A of FUT2 in a single tube. ResultsThree genotypes of each of three variants of FUT2 were accurately determined by the triplex probe-based FMCA. We then validated this method using genomic DNA samples of 47 Bangladeshis, and the results obtained by using this method were fully concordant with those by previous Sanger sequencing. ConclusionsSince the present single triplex probe-based FMCA is robust, fast, and cost-effective, we are able to effectively estimate the secretor status of subjects on a large scale in many populations around the world.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call