Abstract

The observed density of dark matter is of the magnitude expected for a thermal relic weakly-interacting massive particle (WIMP). In addition, the observed baryon density is within an order of magnitude of the dark matter density. This suggests that the baryon density is physically related to a typical thermal relic WIMP dark matter density. We present a model which simultaneously generates thermal relic WIMP-like densities for both baryons and dark matter by modifying a large initial baryon asymmetry. Dark matter is due to O(100) GeV gauge singlet scalars produced in the annihilation of the O(TeV) coloured scalars which are responsible for the final thermal WIMP-like baryon asymmetry. The requirement of no baryon washout implies that there are two gauge singlet scalars. The low temperature transfer of the asymmetry to conventional baryons can be understood if the long-lived O(TeV) coloured scalars have large hypercharge, |Y| > 4/3. Production of such scalars at the LHC would be a clear signature of the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.