Abstract

Functional retinal imaging, especially of neuronal activity non-invasively in humans, is of tremendous interest. Although the activation of photoreceptor cells (PRCs) could be detected in humans, imaging the function of other retinal neurons had been so far hardly possible. Here, using phase-sensitive full-field swept-source optical coherence tomography (FF-SS-OCT), we show simultaneous imaging of the activation in the photoreceptor and ganglion cell layer/inner plexiform layer (GCL/IPL). The signals from the GCL/IPL are 10-fold smaller than those from the PRC and were detectable only using algorithms for suppression of motion artifacts and pulsatile blood flow in the retinal vessels. FF-SS-OCT with improved phase evaluation algorithms, therefore, allowed us to map functional connections between PRC and GCL/IPL, confirming previous ex vivo results. The demonstrated functional imaging of retinal neuronal layers can be a valuable tool in diagnostics and basic research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.