Abstract

Identification of constitutive parameters relies mainly on their sensitivity to the measurands. In particular, the specific static and kinematic responses controlled by each parameter of interest has to be captured by full-field measurements. The development of modern constitutive models has led to many new and interesting sample geometries and loading histories, aiming at maximizing the sensitivity to their delicate material parameters, especially through their kinematics of interest. However, it is often impossible to design an experiment that activates all material parameters of interest, and thus multiple experiments are needed. This paper discusses a methodology for combining the data from such multi-experiments into a single identification process to calibrate a complete set of parameters at once. Many different ways of merging experimental data exist, leading to unbiased identifications of the parameters of interest. However, only one optimal procedure leads to minimal uncertainty, taking into account the noise of each acquisition source. The proposed identification method is a natural extension of inverse methods such as Finite Element Method Updating (FEMU) with appropriate weights or Integrated Digital Image Correlation (I-DIC). This procedure is illustrated by the identification of the planar parameters of the so-called Hill48 anisotropic yield surface together with an exponential isotropic hardening law of AA2219.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.