Abstract

AbstractIn order to simplify a fabrication process of silicon carbide power MOSFETs (metal oxide semiconductor field effect transistors), development of a simultaneous formation process of ohmic contacts to both the p-well and n-source regions of the SiC devices using same contact materials and one step annealing was challenged. We succeeded to develop NiAl-based contact materials which provided ohmic behaviors for both n- and p-type 4H-SiC after one step annealing. The Ni/Al and Ni/Ti/Al ohmic contacts were prepared by depositing sequentially Ni, (Ti) and Al layers with various layer thicknesses onto the n- and p-type SiC substrates which were doped with N at 1 × 1019 cm-3 and with Al at 8 × 1018 cm-3, respectively. The Ni(50 nm)/Al(5 ~ 6 nm) contacts showed ohmic behaviors for both the n- and p-type SiC substrates after annealing at 1000 °C. The Ni(20 nm)/Ti(50 nm)/Al(50 ~ 70 nm) contacts showed ohmic behaviors for both the n- and p-type SiC substrates after annealing at a lower temperature of 800 °C. The specific contact resistances of these contacts were measured to be in the order of 10-3 Ω-cm2 for both p- and n-type SiC, and were found to have strong dependence of the Al layer thicknesses of materials. The interfacial microstructures of the NiAl-based contacts were also observed by transmission electron microscopy (TEM) to understand the current transport mechanism through the metal/SiC interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call