Abstract

A novel optical microfiber asymmetric Fabry-Perot interferometric (MAFPI) sensor is developed for simultaneous measurement of force and temperature. The MAFPI structure is formed by a weak fiber Bragg grating (FBG), a section of the microfiber, and a cleaved fiber end surface. The narrowband beam reflected from the low-reflectivity FBG and the broadband beam from the Fresnel reflection interfere lead to its unique sensing performance. The force sensing is performed by detecting the bending-loss induced fringe contrast changes, while the Bragg wavelength shift is employed for temperature measurement. Sensitivities of 9.8 pm/°C and 0.025 dB/μN were obtained experimentally for temperature and force measurements, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.