Abstract

Single molecule force spectroscopy using optical tweezers (OT) has enabled nanoresolved measurements of dynamic biological processes but not of synthetic molecular mechanisms. Standard OT probes made from silica or polystyrene are incompatible with trapping in organic solvents for solution phase chemistry or with force-detected absorption spectroscopies. Here, we demonstrate optical trapping of gold nanoparticles in both aqueous and organic conditions using a custom OT and darkfield instrument which can uniquely measure force and scattering spectra of single gold nanoparticles (Au NPs) simultaneously. Our work reveals that standard models of trapping developed for aqueous conditions cannot account for the trends observed in different media here. We determine that higher pushing forces mitigate the increase in trapping force in higher index organic solvents and lead to axial displacement of the particle which can be controlled through trap intensity. This work develops a new model framework incorporating axial forces for understanding nanoparticle dynamics in an optical trap. These results establish the combined darkfield OT with Au NPs as an effective OT probe for single molecule and single particle spectroscopy experiments, with three-dimensional nanoscale control over NP location.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call