Abstract

Hypertensive cardiovascular disease is a persistent threat to public health. Elucidating the pathogenesis of hypertension is expected to provide more highly targeted therapies for patients. To date, reactive oxygen species (ROS) induced endothelial nitric oxide synthase (eNOS) uncoupling are generally considered to be common phenomena in hypertension. However, the critical factor contribute to persistent eNOS uncoupling remains poorly understood. Herein, we established a fluorescence probe, GolROS, for the multicolored and simultaneous detection of Golgi O2•− and H2O2 in situ. We successfully detected increases in Golgi ROS levels in hypertensive mice and evaluated the pharmaceutical effects of various antihypertensive drugs. More importantly, we identified the ROS post-transcriptional modification sites on dihydrofolate reductase (DHFR). Altogether, we propose a novel therapeutic target for hypertension, which will promote the development of new antihypertensive drugs, and also developed an ideal fluorescence probe to study in situ Golgi O2•− and H2O2 changes in various biochemical processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call