Abstract

One-dimensional transient flows of three layers immiscible fractional Maxwell fluids in a cylindrical domain have been investigated in the presence of a porous medium. In the flow, the domain is considered the concentric regions namely one clear region and other two annular regions are filled with a homogeneous porous medium saturated by a generalized Maxwell fluid. The studied problem is based on a mathematical model focused on the fluids with memory described by a constitutive equation with time-fractional Caputo derivative. Analytical solutions to the problem with initial-boundary conditions and interface fluid-fluid conditions are determined by employing the integral transform method (the Laplace transform, the finite Hankel transform and the finite Weber transform). The memory effects and the influence of the porosity coefficient on the fluid motion have been studied. Numerical results and graphical illustrations, obtained with the Mathcad software, have been used to analyze the fluid behavior. The influence of the memory on the fluid motion is significant at the beginning of motion and it is attenuated in time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.